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It is shown that the set of observable functionals associated with a constrained 
field theory satisfying two given assumptions is a Jordan algebra under the 
symmetric Dirac bracket composition law. 

1. I N T R O D U C T I O N  

In a recent paper  Truini (1986) has shown the usefulness of  the concept 
of  Jordan pairs in the study of supergravity theories. Such a concept 
generalizes that of  a Jordan algebra and links it naturally to a Lie algebra. 

The aim of the present note is to show that a Jordan algebra (P. Jordan 
et aL, 1934; Albert, 1934; Jacobson, 1949, 1968), realized through the 
symmetric Dirac brackets (Dirac, 1950, 1958, 1964; Franke and K~ilnay, 
1970), is an algebraic structure always present in the theory of classical fields. 

As is known (Pedroza and Vianna, 1980) for discrete systems we cannot 
always define a Jordan product using the plus Dirac brackets. Hence it is 
not evident that the set of  observable functionals of  a field theory described 
by the symmetric formulation of classical mechanics satisfy the axioms of 
a Jordan algebra. Nevertheless, we show that this is true for a wide class 
of  field theories. This class of  fields includes half-integer spin (Fermi) 
systems described by Weyl, Dirac, and Rarita-Schwinger fields. 

2. CONSTRAINED FIELD T H E O R I E S  

Let us suppose that our field system is described by a function of 
time t, 

= ~ ( x )  = ~ ( x ;  t )  = ( 9 , ,  ~ 2 ,  �9 � 9  ~ n )  
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where x =  (xl, x2, x3) denotes the spatial coordinates of a point in real 
physical space and ~ (i = 1, 2, . . . ,  n) are the field components. The field 
velocity n-tuple is then the associated form 

s  ~2, �9 . . , ~ n )  

Consider that the Lagrangian ~ = 2a[q,, 4 ]  is a real scalar functional 
of q~ = ~(x)  and q? = ~(x).  We have the field momentum density n-tuple 

n -- n ( x )  -~ a ~ / a , i , ( x )  

: (a2e/aq,~(x), aLe /aa , i ,2 (x) , . . . ,  a ~ / a , ~ , ( x ) )  

( I l l ( X ) ,  I I 2 ( X ) ,  �9 �9 �9 , H n ( X ) )  

where 8 / 8 ~ ( x )  denotes the functional derivative with respect to ~i'~(x); 
the canonical field variables are II(x) and q~(x). 

As was shown by Droz-Vincent (1966) for the unconstrained classical 
system and by Franke and Kfilnay (1970) for systems involving constraints, 
besides the skew-symmetric algebraic structure there exists another sym- 
metric structure. This new classical structure is characterised by the existence 
of a bracket { , }+ called the plus (or symmetric) Poisson bracket and a 
bracket { , }* called the plus (or symmetric) Dirac bracket, for uncon- 
strained and constrained classical systems, respectively. Hence, for classical 
fields described by the symmetric classical structure we can define the plus 
Poisson bracket 

{E G}+ = I [aF/an~(x)  �9 a G / a , V , ( x ) + a F / a ~ , , ( x ) ,  aG/an , (x ) ]  dx (1) 

where dx = dx~ dx2 dx3 and F and G are observable functionals, and the 
summation convention with respect to repeated indices is used here and 
always in the following. 

By using a symplectic notation, we can write (1) as 

{P, C}+ = f sA,~ aF/a,oA,(x) �9 aG/ao,~(x)  dx 

A, B = 1,2; i , j  = 1, 2 , . . . ,  n (2) 

where Sli~ - = S2iaj = 8i~, slilj  = S2i~ =0, o91i = Hi, o92i =q~i. 
In the following, for the sake of notational simplicity, we denote o~ A (X) 

by ~o~(x). Then the relation (2) can be written 

{F, G}+ = ~" s 'J a F / a , o ' ( x )  �9 8G/~5o9 j dx 
3 
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If ~ is a degenerate functional Lagrangian (Hermann, 1970; Hanson 
et aL 1976), one has 

1. A set of constraints (Dirac, 1950) 

Ka(17, ~)  ~ 0, a = l , 2 , . . . , m  

2. A subset of symmetric second-class constraints (Franke and Kfilnay, 
1970) 

| ~)  ~ 0, a =l ,2 , . . . , p ,  m>-p 

where p is no longer necessarily even, in opposition to the skew-symmetric 
formulation. Now it is possible to introduce the plus Dirac bracket (Franke 
and K~ilnay, 1970) 

{F, G}+* :{F ,  G } - f  {F, O~(x)}+D~t3(x-x'){Ot~(x'), G}+ dxdx' (3) 

where D ~ ( x - x ' )  is the inverse matrix of ]]{@~(x), @~(x')}+tl. 
Then it follows readily that we can write (3) as 

{F, G}*= f M ' ( x - x ' )  ~F/~ ,o ' (x )  �9 ~G/&o~(x ') dx dx' 

with M U ( x - x  ') depending upon the symmetric second-class constraints, 
and M ' ( x - x ' ) =  MU(x ' -x )  as a consequence of the symmetric property 
of the brackets { , }*. 

We want to know if the set of all dynamical variables 
(F(H, ~),  G(rr, ~ ) , . . . ,  H(H, q~)) is a Jordan algebra with the Jordan prod- 
uct defined by the combination law (3). We suppose that: 

Assumption 1. The observables F, (3, . . . ,  H of the continuous dynami- 
cal system described by the symmetric formulation of classical field theory 
are functionals at most quadratic in canonical field variables, i.e., 

a3F/&o'Cx) 8wJ(x ') 6wK(x ") =0 
(4) 

,~3G/~o'(x) ao/(x ')  &oK(x ") = o 

Assumption 2. The symmetric second-class constraints are 
homogeneous functionals of first degree of the canonical field variables. 

As a consequence, from Assumption 2 we have that the elements 
M~J(x-x ') do not depend on any canonical field variables, i.e., 
3M 'J ( x -  x')/8w L(x) = 0. 

From Assumption 1, we have that if two observables F and G, for 
example, satisfy the relations (4), {F, G}* also satisfies this assumption and 
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the set (F ( I I ,~ ) ,  G ( I I , ~ ) , . . . ,  H(FI ,~) )  is closed under the product 
defined by combination law (3). To analyze the identity 

{F 2, {G, F}*}*+ : {{F 2, G}*+, F}*+ (5) 

with F 2= {F, F}*+, which must be satisfied if (/7, G , . . . ,  H) is a Jordan 
algebra, we obtain from the left-hand side of (5) 

J ,  = { F  2, {G, F}~}+* 

=2 f MIJ(x-x')MKL(y-y')MeQ(z-z') (~aF/~w'(x) (~toK(y) 

x [aF/&o1(x') �9 a2G/&oL(y ') &o P(z) aF/,%~ ~ ') 

+ a2F/&oJ(x') ao, e(z) aG/&o'-(y') aF/&o~ 

• dyay' dzdz' (6) 

And from the right-hand side of (5) we have 

a~2 = {{ f  2, 0}2 , F}++ 

= 2 I M"(x-x ')MKL(Y-Y')MVO(z-z ' )  a2F/&~ 6wL(Y') 

x [aF/&oJ (x ') a:G/ao~'((y) aoj~ ') aF/aoJ'(z') 

+ a:F/ao/(x') aoJ~(z) aG/&o'-(y') &o~ 

x dx dx' dy dy' dz dz' (7) 

Then, by a change of summation indices and of integration variables, 
we get from (6) and (7) that 

Pl = P~ 

Hence we can conclude that if Ze is a degenerate functional Lagrangian 
such that Assumptions 1 and 2 are satisfied, the set of observable functionals 
of the corresponding field theory constitutes a Jordan algebra under the 
plus Dirac bracket combination law (3). 

3. CONCLUDING REMARKS 

We show that for a field theory satisfying two simple assumptions, the 
symmetric Dirac bracket defines a Jordan algebra on the associated set of 
observable functionals. It is interesting to note that the Assumptions 1 and 
2 are not too restrictive, since the usual class of field theories for half-integer 
spin (Fermi) systems satisfies them. In this class of theories we have the 
Weyl, Dirac, and Rarita-Schwinger fields, for instance. 



Jordan Algebra and Field Theory 955 

Nevertheless, fermionic string theories (Ramond, 1971; Neveu and 
Schwarz, 1971; Schwarz, 1982), do not satisfy Assumption 2 and, con- 
sequently, equation (5) is no longer automatically satisfied, but imposes 
some restrictions on the constraints. The question of whether the Jordan 
algebra is also present in such theories will be investigated in a future paper. 

The result obtained in this note can be useful in the study of the 
quantization method for fields. In fact, knowing that a classical field defines 
a Jordan algebra, one has that the corresponding quantum theory must 
retain the algebraic structure of the dynamical variables (Hermann, 1970; 
T. F. Jordan and Sudarshan, 1961; Streater, 1966). Hence, the quantization 
procedure of such fields corresponds to obtaining representations of the 
Jordan algebra by operators in a Hilbert space. In that context it is expected 
that the study of representations of Jordan algebras in Hilbert spaces should 
be of physical significance. 
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